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Statistical mechanics of stochastic neural networks: Relationship between the self-consistent
signal-to-noise analysis, Thouless-Anderson-Palmer equation, and replica symmetric

calculation approaches
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We study the statistical mechanical aspects of stochastic analog neural network models for associative
memory with correlation type learning. We take three approaches to derive the set of the order parameter
equations for investigating statistical properties of retrieval states: the self-consistent signal-to-noise analysis
~SCSNA!, the Thouless-Anderson-Palmer~TAP! equation, and the replica symmetric calculation. On the basis
of the cavity method the SCSNA can be generalized to deal with stochastic networks. We establish the close
connection between the TAP equation and the SCSNA to elucidate the relationship between the Onsager
reaction term of the TAP equation and the output proportional term of the SCSNA that appear in the expres-
sions for the local fields.
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I. INTRODUCTION

Statistical mechanical methods have turned out to be p
erful for investigating neural network models of learning a
memory @1–6#. The existence of certain energy functio
plays an essential role for getting insights into behaviors
relevant macroscopic quantities, which are often called or
parameters, by evaluating their minima based on the sa
point method. In the case of associative memory models
replica method@7# has been extensively employed to stu
statistical properties of retrieval states@1,2,5,8–12#. Amit,
Gutfreund, and Sompolinsky@2,8,9# have applied the mea
field model of spin glasses@7,13# to the Hopfield model@14#
of Ising spin networks to obtain the storage capacity, wh
is given as a critical loading rate corresponding to the on
of a first kind phase transition, on the basis of evaluating
free energy. The statistical behavior of the Ising spin n
works has alternatively been studied by means of
Thouless-Anderson-Palmer~TAP! equations @1,15–19#,
where the equilibrium states of the stochastic network can
described by deterministic equations. The transformation
the deterministic system can potentially save computatio
times required for numerically investigating equilibriu
properties of the original stochastic systems of large s
The concept of the TAP equation has recently been gain
popularity among researchers working with communicat
theories from the viewpoint of engineering applications@20#.
TAP equations are known to be derived by either a cav
method@1,19# or the Plefka method@16,18#. The TAP equa-
tion for the Hopfield model was first derived by means o
cavity method, but later turned out to be inconsistent with
result based on other methods@17–19#.

In the case of neural network models where the ene
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concept does not make sense, however, the above-menti
kind of statistical mechanical approaches cannot be app
Neural networks in the real world have asymmetric synap
connections that are incompatible with the energy conc
To cope with the difficulty in dealing with deterministi
analog network models without the energy concept, Shi
and Fukai@21,22# devised a powerful method of the SCSNA
which is closely related to the cavity method. It h
been applied to study the equilibrium properties of t
associative memory of deterministic analog networksxi
5F(( j Þ iJi j xj ), whereJi j represents synaptic coupling th
may have certain types of asymmetric form@21,23,24# and
the transfer functionF is allowed to have an arbitrary shap
@22–26#. Variants of the above analog networks such as
cillator networks based on phase oscillator models@27# have
also been successfully studied using the self-consis
signal-to-noise analysis~SCSNA! to show that memory re-
call accompanied by synchronization of oscillators is of r
evance in associative memory@28–33#.

The SCSNA is a self-consistent method for prope
renormalizing the so-called noise part due to interference
noncondensed patterns in the local field of a neuronhi
5( j Þ iJi j xj : To extract pure noise obeying a Gaussian d
tribution one decomposes the local field in such a way th

(
j Þ i

Ji j xj5j i
1m1Aarzi1GSCSNAxi , ~1!

wherej i
1m represents a signal part involving the condens

patternj i
1, Aarzi represents pure noise, and the last ter

GSCSNAxi represents the output proportional term, which a
determined self-consistently. When the SCSNA is applied
a deterministic analog network with a monotonic trans
function, such as tanhb~ ! with b representing the analo
gain, one obtains the same result as that by the rep
method as are shown in the papers of Shiino and Fukai@10#
and of Kuhnet al. @11,12#. Kuhn et al. studied stochastic
analog networks with monotonic transfer functions using
replica calculations to deal with the deterministic limit.

We can apply the SCSNA to TAP equations of stochas
networks, which can be viewed as defining the equilibriu

ch
y,
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equations of certain deterministic analog networks, to ob
the set of order parameter equations. The TAP equatio
the Ising spin network takes the following form withxi ( i
51, . . . ,N) representing a thermal average of spins^Si&
@17,22#:

xi5tanhbS (
j Þ i

Ji j xj1lONS
~ ISING!xi D , ~2!

whereJi j is assumed to be given by the standard Hebb lea
ing rule and

lONS
~ ISING!5

2ba~12q!

12b~12q!
. ~3!

Shiino and Fukai@22# have shown that the application o
the SCSNA to the above TAP equation leads to the sa
result as that of Amit, Geutfreund, and Sompolinsky~AGS!.
This procedure for obtaining the set of order parameter eq
tions sheds light on the importance of the so-called Onsa
reaction term that appears in the TAP equation~2!:
lONS

(ISING)xi . The Onsager reaction term takes the form prop
tional to a term in the local field that would originate fro
the presence of self-couplings. The renormalized form of
local field ~1! defined within the framework of the SCSN
also contains a similar term that is given by the output p
portional term. In the case of the network of Eq.~2!, the
output proportional termGSCSNA

(ISING)xi has been found to equa
the minus of the Onsager reaction term, so that they exa
cancel each other@22#:

GSCSNA
~ ISING!52lONS

~ ISING! . ~4!

This relation can be considered to give a statistical m
chanical interpretation of the output proportional term d
rived from the SCSNA and also conversely the meaning
the Onsager reaction term from the viewpoint of a kind
signal-to-noise analysis. It will be worth noting that the d
tribution of the local fields of neurons of the Ising spin ne
work hi5( j 51Ji j xj turns out to be non-Gaussian, while th
distribution of the TAP local fields defined byhi

TAP

5( j 5 iJi j xj1lONS
~ISING!xi , which appears in Eq.~2!, is indeed

Gaussian owing to the above relation~4! together with Eq.
~1! @22#.

Effects of the output proportional term are pronounced
the case of deterministic analog networks with a nonm
tonic transfer function@22–26,34,35# for which the existence
of energy functions is not ensured. Use of nonmonto
transfer functions in associative memory neural networks
been shown to improve the network performances such
the storage capacity is increased beyond the well kno
value of 0.138 of the AGS under the correlation type learn
rule @22–26,34,35#. In particular, when the degree of non
monotonicity of transfer functions is so large that the p
scription of the Maxwell rule@10,22# is needed within the
framework of the SCSNA, a phenomenon of super-retrie
has been shown to occur@22–26#, where variance of pure
noise vanishes and memory retrieval without errors is
sured for an extensive number of patterns. In this case
local field ~1! consists only of a signal part and the outp
proportional term and the latter plays a crucial role for t
occurrence of the super-retrieval@22,25#. Influences of sto-
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chastic noise on the behavior of retrieval states of ana
networks as well as of Ising spin networks that have n
monotonic transfer functions or transition probabilities are
interest from the viewpoint of studying the possibility of th
occurrence of the super-retrieval phase. The study of s
stochastic systems based on the assumption of Eq.~4!, how-
ever, reveals that the super-retrieval state loses its stab
@36,37#.

A stochastic neural network of analog type was also st
ied previously for a coupled phase oscillator model using
SCSNA and the TAP equation approaches, and the relat
ship between the output proportional term and the Onsa
reaction term in the stochastic local field was discussed@31#
on the basis of the assumption for the relation analogou
Eq. ~4!.

The aims of the present paper are twofold. Firstly,
extend in a systematic manner the SCSNA that was dev
for deterministic analog networks so as to cover stocha
analog network models to aim at obtaining its wider app
cability. Secondly we want to study the relationship betwe
the SCSNA, the TAP equation, and replica methods to
deep insights into the foundation of the SCSNA togeth
with the treatment of the output proportional term as well
the Onsager reaction term for stochastic analog networks
are particularly interested in investigating the problem
whether the relation analogous to Eq.~4! holds in more gen-
eral situations.

This paper is organized as follows. In Sec. II we presen
stochastic analog neural network model for associa
memory together with a heuristic argument of the stocha
version of the original SCSNA and the TAP equations, wh
will be confirmed in later sections. In Sec. III we investiga
the TAP equation of our model system by means of the c
ity method, which requires two steps for determining t
functional form of the TAP equation~pre-TAP equation! and
the associated coefficient of the Onsager reaction term
Sec. IV we systematically study the SCSNA of the stocha
version by making use of the results of Sec. III. We ta
slightly different two approaches for this purpose. First, a
plying the deterministic version of the SCSNA to the pr
TAP equation that can be viewed as a deterministic ana
network yielding the same statistical properties as the
chastic network, we obtain the set of order parameter eq
tions describing the retrieval states to confirm the validity
the treatment of Sec. II. The coefficient of the Onsager re
tion term is shown to be determined in the course of t
procedure to recover the result of Sec. III. In the seco
approach the same set of order parameter equations ar
rived from the full knowledge of the TAP equation. In Sec.
we present the replica symmetric analysis of our system
confirm again our theory of the SCSNA. Section VI is d
voted to a summary and discussion.

II. STOCHASTIC ANALOG NETWORK AND THE SCSNA

A. Model

We consider a stochastic analog network of the form

dxi

dt
52

]f~xi !

]xi
1(

j Þ i
Ji j xj1 f i~ t !, i 51, . . . ,N11

^ f i~ t ! f j~ t8!&52Dd~ t2t8!d i j ~5!
4-2
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wheref(xi) represents the potential and the synaptic c
pling Ji j is assumed to be given by the standard Hebb lea
ing rule

Ji j 5
1

N (
m51

p

j i
mj j

m ~ iÞ j !, Jii 50 ~6!

with j i
m (m51, . . . ,p) representing p(5aN) random

memory patterns:

pr~j i
m!5 1

2 d~j i
m21!1 1

2 d~j i
m11!. ~7!

D(>0) represents the intensity of externally driven Lang
vin noise. The set of Langevin Eqs.~5! yields the Fokker-
Planck equation of probability densityp(t,x1 ,...,xN11):

]p

]t
52 (

i 51

N11
]

]xi
F S 2

]f~xi !

]xi
1(

j Þ i
Ji j xj D pG1D (

i 51

N11
]2

]xi
2 p.

~8!

According to theH-theorem for the Fokker-Planck equatio
the probability densityp is ensured to approach its equilib
rium density peq(t,x1 ,...,xN11) for long times @38,39#,
which reads

peq5
1

ZN11
expF21

D H (
i 51

N11

f~xi !2 1
2 (

i j ~ iÞ j !
Ji j xixjJ G ,

~9!

whereZN11 is the partition function of the system.
We are interested in the equilibrium statistical behavi

of the order parameters relevant to associative memory
trieval under the assumption of synaptic couplings~6!. When
the potentialf(x) is of double-well type and just a singl
pattern is considered (p51), the system turns out to b
equivalent to the mean field model of ferromagnets, wherD
plays the role of temperature and the spontaneous symm
breaking occurs below a certain critical value ofD as a result
of the onset of a pitchfork bifurcation in the limit of largeN
@40–43#. In such a case the method of the nonlinear Fokk
Planck equations@40–47#, which belong to the class o
nonlinear master equations@48#, is known to be powerful for
the analyses of equilibrium and nonequilibrium properties
the absence of the Langevin noise (D50) Eq. ~5! takes the
form of an analog neural network equation of associat
memory, whose macroscopic equilibrium behavior for t
retrieval states can be analyzed by the method of the SCS
@21,22# when one considers an extensive number of patte
p(5aN).

B. SCSNA: Heuristic derivation

We study the stochastic system given by Eq.~5! from
the viewpoint of applying the SCSNA. Assumingp5aN
and confining ourselves only to equilibrium or near equil
rium of the system, we formally apply the basic scheme~1!
of the SCSNA to the stochastic quantity of the local fie
01190
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( j Þ iJi j xj . We then assume the following Ansatz that in t
largeN limit the stochastic local field can be split into thre
terms:

(
j Þ i

Ji j xj5j i
1m~ II !1Aar ~ II !zi1G̃xi , ~10!

where we supposem(II) , r (II) , G̃, andzi to be nonstochastic
quantities with respect to timet. The first term on the right-
hand side~RHS! of Eq. ~10! represents the signal part wit
m(II) representing the overlap for the condensed pattern$j i

1%,

m~ II !5
1

N (
i 51

j i
1xi5

1

N (
i 51

j i
1^xi& ~11!

and the second term represents the so-called noise part
tuating over sitesi that obeys a Gaussian distribution wi

mean 0 and variancear (II) . The third termG̃xi , which re-
mains to be a stochastic variable, denotes the effective s
coupling one that arises from the renormalization of nons
nal part of the local field within the framework of th
SCSNA. Noting that RHS of Eq.~10! involves only the vari-
able of sitei, we may rewrite Eq.~5! to have a single body
Langevin equation for variablexi ,

dxi

dt
52

]f~xi !

]xi
1j i

1m~ II !1Aar ~ II !zi1G̃xi1 f i~ t !, ~12!

wherem, r, andG̃ have to be determined self-consistently
the course of our analysis. The corresponding Fokker-Pla
equation reads

]

]t
p~xi ,t !52

]

]xi
@~2f8~xi !1j i

1m~ II !1Aar ~ II !zi1G̃xi !p#

1D
]2p

]xi
2 . ~13!

The equilibrium distribution is given by

peq~xi !5C expS 2f~xi !1~j i
1m~ II !1Aar ~ II !zi !xi1

G̃

2
xi

2

D
D .

~14!

The average is then given by

^xi&5E xipeq~xi !dxi , ~15!

which we consider to represent the renormalized out
functionY(z) in the SCSNA framework. In other words, th
above equation may be viewed as resulting, via the SCS
from the equilibrium equation for a certain deterministic an
log neural network model whose macroscopic statistical
havior is the same as that of the original stochastic netw
~5!. We can indeed expect the TAP equation to serve as s
an equilibrium equation, as is shown later.
4-3
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Then, using the SCSNA, we formally obtain the orde
parameter equations form(II) , q(II) , r (II) , U (II) , andGSCSNA

(II)

@21,22#:

m~ II !5 K jE Dz^x&L
j

, ~16a!

q~ II !5 K E Dz^x&2L
j

, ~16b!

Aar ~ II !U ~ II !5 K E Dz ẑ x&L
j

, ~16c!

GSCSNA
~ II ! 5

aU ~ II !

12U ~ II ! , ~16d!

r ~ II !5
q~ II !

~12U ~ II !!2 . ~16e!

Furthermore, it will be reasonable to assume that

G̃5GSCSNA
~ II ! , ~17!

since we may expect from Eq.~10! that

(
j Þ i

Ji j ^xj&5j i
1m~ II !1Aar ~ II !zi1G̃^xi& ~18!

and we are applying the SCSNA prescription~1! to the RHS
of Eq. ~18!.

From Eqs.~16! and~17! together with Eq.~15!, which we
expect to constitute the set of order parameter equations
the SCSNA of stochastic version, one can determine the s
age capacity as the marginal value of the storage ratioa for
the existence of the retrieval solution withm(II) Þ0. We will
confirm the validity of the above procedure based on
Ansatz~10! in later sections.

It should be noted that in the deterministic limitD→0 the
average in Eq.~15! turns out to be given by the saddle poi
evaluation of the integral of Eq.~15!, which reads

2
]f~xi !

]xi
1j i

1m~ II !1Aar ~ II !zi1G̃xi50. ~19!

This equation is the same as what is obtained from
application of the SCSNA to the deterministic analog n
work equation that follows from settingD50 and dxi /dt
50 in Eq. ~5!.

It is also worth noting that we can propose the expli
form of the TAP equation for our system that is consist
with the analog of Eq.~4!. Noting Eq.~15! together with Eq.
~18!, we suppose the TAP equation to be of the form

^xi&5GS (
j Þ i

Ji j ^xj&1lONS
~ II ! ^xi& D , ~20!

with
01190
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or
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t

G~y!5E xiC expS 2f~xi !1yxi1
G̃

2
xi

2

D
D dxi ~21!

where we have introduced the coefficient of the Onsager
action termlONS, which has to satisfy

lONS
~ II ! 52G̃. ~22!

Then noting Eq.~17!, we see that the analog of relatio
~4! holds

lONS
~ II ! 52GSCSNA

~ II ! . ~23!

We can apply the deterministic version of the SCSNA to
TAP equation~20!. This is the very situation where we writ
down Eqs.~16! under Eq.~15!.

III. TAP EQUATION

In this section we systematically derive the TAP equat
for our stochastic system~5! to justify Eqs.~20!, ~21!, and
~23!, using the cavity method@1,19#. In view of the equilib-
rium density given by Eq.~9! we consider an (N11)-body
system with coordinates (x0 ,x1 ,...,xN), whose Hamiltonian
is given by

H ~N11!5(
i 50

N

f~xi !2
1

2 (
i j ~ iÞ j !

Ji j xixj , ~24!

where

Ji j 5
1

N (
m51

p

j i
mj j

m , i , j 50,...,N. ~25!

Then the Hamiltonian can be rewritten as

H ~N11!5H ~N!1f~x0!2h0x0 ~26!

with

h05(
j 51

N

J0 j xj , ~27!

H ~N!5(
i 51

N

f~xi !2
1

2 (
i j ~ iÞ j !

Ji j xixj , ~28!

whereH (N) represents the Hamiltonian of theN-body sub-
system with coordinates (x1 ,...,xN). We set

b5
1

D
~29!

in what follows. We consider the probability density

PN11~x0 ,h0!5
1

ZN11
E dS h02(

j 51

N

J0 j xj D
3e2bH~N11!

dx1¯dxN , ~30!
4-4
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where ZN11 is the partition function of the system wit
H (N11). We can rewrite Eq.~30! as

PN11~x0 ,h0!5
ZN

ZN11

1

ZN
E dS h02(

j 51

N

J0 j xj D
3e2bH~N!

eb@h0x02f~x0!#dx1¯dxN

5
ZN

ZN11
eb~h0x02f~x0!!PN~h0!, ~31!

where

PN~h0!5
1

ZN
E dS h02(

j 51

N

J0 j xj D e2bH~N!
dx1¯dxN .

~32!

We have

ZN11

ZN
5

1

ZN
E e2bH~N11!

dx0dx1¯dxN

5E Z0~h0!PN~h0!dh0

[^Z0~h0!&N , ~33!

where we have defined

Z0~h0!5E e2b~f~x0!2h0x0!dx0 ~34!

and ^ &N stands for the average over the probability dens
PN(h0). Using Eqs.~31! and~33!, we obtain the average o
^x0&N11 in the (N11)-body system as

^x0&N115E x0PN11~x0 ,h0!dx0dh0

5
^A~h0!&N

^Z0~h0!&N
, ~35!

where

A~h0!5E x0e2b~f~x0!2h0x0!dx0 , ~36!

^A~h0!&N5E A~h0!PN~h0!dh0 . ~37!

We also obtain the average of local fieldh0 in the (N
11)-body system as

^h0&N115E h0PN11~x0 ,h0!dx0dh05
^h0Z0~h0!&N

^Z0~h0!&N
.

~38!

Since h0 in Eq. ~27! can be considered to be a sum
independent random variables, it obeys a Gaussian distr
tion. Its mean and variance are given, respectively, by
01190
y

u-

^h0&N5(
j 51

N

J0 j^xj&N , ~39!

^~dh0!2&N5 (
i j 51

N

J0iJ0 j^dxidxj&N5(
mn

p

j0
mj0

n^dmmdmn&N

5(
m

p

^~dmm!2&N[r N ~40!

with

mm5
1

N (
j

N

j j
mxj , ~41!

where dh05h02^h0&N , and we have noted that the of
diagonal terms in the sum overm and n have only a negli-
gible contribution for sufficient largeN under the condition
that p5aN.

It can also be assumed that in the largeN limit

r N→R̃. ~42!

Then we have the probability density ofh0

PN~h0!5
1

A2pR̃
expF2

~h02^h0&N!2

2R̃
G ~43!

for sufficient largeN.
Using this we can compute the averages in theN-body

system,

^Z0~h0!&N5E E dx0dh0

1

A2pR̃

3expF2b~f~x0!2h0x0!2
~h02^h0&N!2

2R̃
G

5E expF2b~f~x0!2^h0&Nx0!1
1

2
R̃b2x0

2Gdx0 ,

~44!

^A~h0!&N5E x0 exp$2b@f~x0!2^h0&Nx0#1 1
2 R̃b2x0

2%dx0 .

~45!

Furthermore, noting that
4-5
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^~h02^h0&N!Z0~h0!&N5E E dudx0

A2pR̃
u expF2bS f~x0!2^h0&Nx02

R̃b

2
x0

2D 2
~u2R̃bx0!2

2R̃
G

5E R̃bx0 expF2bS f~x0!2^h0&Nx02
R̃b

2
x0

2D Gdx05R̃b^A~h0!&N , ~46!
-

-

ed

,

n

we have

^h0Z0~h0!&N5^~h02^h0&N!Z0~h0!&N1^h0&N^Z0~h0!&N

5R̃b^A~h0!&N1^h0&N^Z0~h0!&N . ~47!

It follows from Eqs.~35!, ~44!, and~45! that

^x0&N115

E x0 expF2bS f~x0!2^h0&Nx02
R̃b

2
x0

2D Gdx0

E expF2bS f~x0!2^h0&Nx02
R̃b

2
x0

2D Gdx0

.

~48!

It also follows from Eqs.~38!, ~44!, and~47! that

^h0&N115^h0&N1R̃b^x0&N11 . ~49!

Substituting this into Eq.~48!, one has

^x0&N115FS (
j 51

N

J0 j^xj&N112R̃b^x0&N11D ~50!

with

F~h!5

E x0 expF2bS f~x0!2hx02
R̃b

2
x0

2D Gdx0

E expF2bS f~x0!2hx02
R̃b

2
x0

2D Gdx0

,

~51!

where we have noted that

^h0&N115(
j 51

N

J0 j^xj&N11 . ~52!

Equation~50! takes the form of the TAP equation. How
ever, we still have to determineR̃ in Eq. ~50!. For this rea-
son, to be precise we refer to Eq.~50! as the pre-TAP equa
tion in the present paper. For the purpose of obtainingR̃ we
proceed to the second step of the cavity method.

Letting the Hamiltonian of the network withp stored ran-
dom patterns be

Hp5(
i 51

N

f~xi !2
1

2 (
i j ~ iÞ j !

S 1

N (
m51

p

j i
mj j

mD xixj ~53!
01190
we consider the Hamiltonian of the network that is obtain
by adding a new patternj i

0 ( i 51, . . . ,N) independent ofj i
m

( i 51, . . . ,N, m51, . . . ,p) to the above-mentioned system

Hp115Hp2
1

2N (
i j ~ iÞ j !

N

j i
0j j

0xixj5Hp2
N

2
m0

21
1

2N (
i

N

xi
2

~54!

with

m05
1

N (
i

N

j i
0xi . ~55!

We define the probability density of them0 that is consid-
ered as the random variable in thep11 pattern system as

Pp11~m0!

5
1

Zp11
E dS m02

1

N (
i

N

j i
0xi D

3e2bHp11dx1¯dxN5
1

Zp11
E dS m02

1

N (
i

N

j i
0xi D

3expF2bS Hp2
N

2
m0

21
1

2N (
i

N

xi
2D Gdx1¯dxN .

~56!

Noting that (1/2N)xi
2 can be neglected in compariso

with f(xi) for largeN, we have

Pp11~m0!5
Zp

Zp11
e~1/2!bNm0

2
Pp~m0!. ~57!

To obtain the probability densityPp(m0) in the p pattern
system we note

^m0&p50 ~58!

and compute the variance ofm0 ,
4-6
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^m0
2&p5^~dm0!2&p5

1

N2 (
i j

N

j i
0j j

0^dxidxj&p

5
1

N2 (
i

N

^~dxi !
2&p5

1

N2 (
i

N

~^xi
2&p2^xi&p

2!

5
1

N
~q32q!, ~59!

where we have neglected the contribution from the o
diagonal terms in the summation and introduced

q35
1

N (
i

N

^xi
2&p , q5

1

N (
i

N

^xi&p
2. ~60!

Hence the summ0 of independent random variables in thep
pattern system obeys the Gaussian distribution

Pp~m0!5A N

2p~q32q!
expF2

Nm0
2

2~q32q!
G . ~61!

Using Eq.~57! together with Eq.~61!, one obtains the vari-
ance ofm0 in the p11 pattern system

^~dm0!2&p115
q32q

N@12b~q32q!#
. ~62!

Substituting this into Eq.~40! one has

R̃5
a~q32q!

12b~q32q!
. ~63!

Equation~50! together with Eq.~63! constitutes the TAP
equation. The fact that the TAP equation obtained here is
same as the one proposed in Sec. II will be shown in the n
section.

IV. SCSNA OF THE STOCHASTIC VERSION:
SYSTEMATIC DERIVATION

We develop in a systematic manner the SCSNA that
comes applicable to the stochastic network~5! to show the
validity of the anzatz of Sec. II. We make use of the cav
method to lay its foundation and pay attention to the first s
of the previous section in deriving the TAP equation. To t
end, we pick up an arbitrary elementxi amongN11 ones of
the network to view it asx0 and to make an appropriat
renumbering of the variables for applying the basic equa
~48! to the stochastic network~5!.

Confining ourselves only to equilibrium states of the n
work, we can repeat the argument of the previous sec
leading to Eq.~48!. Then using Eqs.~48! and ~51! we note
that the averagêx0&N11 is given by

^x0&N115F~^h0&N!. ~64!

Then the local field̂ h0&N is rewritten, in terms of the
pattern overlaps defined by Eq.~41!, as
01190
-

e
xt

-

p
s

n

-
n

^h0&N5(
j 51

N
1

N (
m51

p

j0
mj j

m^xj&N

5j0
1^m1&N1 (

m52

p

j0
m^mm&N . ~65!

We assume here that the pattern overlap order param
corresponding to the condensed pattern takes a finite valum
of O(1) in the limit N→`:

^m1&N→m ~66!

whereas for the pattern overlaps for noncondensed patte

^mm&N.OS 1

AN
D . ~67!

The second term of the last line of Eq.~65! representing
the noise part of the local field is a sum of independ
random variables. Accordingly it should obey a Gauss
distribution. This implies that the size of the noise part
distributed according to a Gaussian distribution, when sit
runs over the whole network, and also that the site aver
can be replaced by the average over the Gaussian distribu
as well as over that of the condensed pattern. It follows t

K (
m52

p

j0
m^mm&NL

site

50, ~68!

K S (
m52

p

j0
m^mm&ND 2L

site

5s2, ~69!

where^ &site represents the site average that is given by tak
average with respect to random patternsj i

m

( i 50, . . . ,N, m52, . . . ,p). The expression for the constan
s2 will be given in the course of the analysis. Evaluation
the value fors2 at this stage of the analysis, however, can
straightforwardly made and presented in Appendix A.

Then in the largeN limit we can rewrite Eq.~64! in terms
of a Gaussian random variablez̃ with mean 0 and variance
s2 as

^x0&5F~j0
1m1 z̃! ~70!

where we have introducedz̃5(m52
p j0

m^mm&N and ^x0&N11

5^x0&. The overlapm can be rewritten as

m5K j0
1E F~j0

1m1 z̃!
1

A2ps
expS 2 z̃2

2s2 Ddz̃L
j

0
1

[^j0
1F& z̃,j

0
1 ~71!

where^ &j
0
1 represents average over the condensed patterj0

1

and^ & z̃,j
0
1 average overj0

1 and the Gaussian random variab

z̃. When we note that the pre-TAP equation~50! holds with
respect to equilibrium states with subscript 0 capable of r
resenting every site, we can view such an equation as de
ing a deterministic analog network equation corresponding
the stochastic network~5!:
4-7
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ui5FS (
j Þ i

N11

Ji j uj2R̃bui D , i 51, . . . ,N11 ~72!

with ui representinĝxi&N11 . Note that the coefficient of the
Onsager reaction termlONS is expressed as

lONS52R̃b.

We will apply the SCSNA to the above analog netwo
For the moment we can proceed without knowing the
plicit expression~63! for R̃. Then we have the renormalize
output equation that is obtained as a result of the renorm
izing noise part of the local field@21,22#,

ui5F@j i
1m1z5 i1~GSCSNA2R̃b!ui #, ~73!

wherez5 represents a Gaussian random variable and the
stantGSCSNA represents the coefficient of the output prop
tional term characteristic to the SCSNA, which is determin
just below.

Comparing with Eq.~70!, we obtain an important result

GSCSNA5R̃b, ~74!

which verifies Eq.~23! and simplifies the matter conside
ably, together withz̃5z5 i . Relevant quantities necessary f
determining retrieval statesU, GSCSNA, s2, andq are given
within the framework of the SCSNA as follows@21,22#:

U5 K dF

dz̃L
z̃,j

0
1
, ~75!

GSCSNA5
aU

12U
, ~76!

s25
aq

~12U !2 , ~77!

q5^F2& z̃,j
0
1. ~78!

Here we note that use of the same notationq as in Eq.
~60! is made for Eq.~78!. DifferentiatingF(h) in Eq. ~51!
with respect toh yields

dF

dh
5b~^x0

2&eq2^x0&eq
2 !, ~79!

where^ &eq denotes the ‘‘thermal average’’ given by

^g~x0!&eq5

E g~x0!expF2bS f~x0!2hx02
R̃b

2
x0

2D Gdx0

E expF2bS f~x0!2hx02
R̃b

2
x0

2D Gdx0

.

~80!

Then we have from Eqs.~75! and ~60!
01190
.
-

l-

n-
-
d

U5b~Š^x0
2&eq‹z̃,j

0
12Š^x0&eq

2
‹z̃,j

0
1!5b~q32q!. ~81!

Equations~74! and ~76! give R̃ as a function ofU,

R̃5
aU

b~12U !
, ~82!

which is necessary to determine the functional formF of the
TAP equation. Substituting Eq.~81! into Eq.~82! we recover
Eq. ~63!, which has previously been obtained for the Onsa
reaction term coefficient2R̃b of the TAP equation by
means of the second step of the cavity method. The T
equation

^xi&5FS (
j Þ i

Ji j ^xj&2
aU

12U
^xi& D , i 51,...,N

with F given by Eq.~51! also turns out to recover the on
given by Eq.~20! with Eq. ~23! we have proposed in Sec. I
by means of a heuristic argument.

Noting s25ar we see that Eqs.~51!, ~71!, ~75!, ~77!,
~78!, and~82! constitute the set of order parameter equatio
for our stochastic system~5!, giving the framework of the
SCSNA of the stochastic version, which ensures the valid
of the result described in Sec. II under the corresponde
m(II) 5m, q(II) 5q, r (II) 5r , U (II) 5U, and GSCSNA

(II)

5GSCSNA. In particular, we note that the crucial ansatz~10!
in the heuristic derivation of the SCSNA has been justifie

We can take an alternative approach to obtain the ab
set of order parameter equations without using the determ
istic version of the SCSNA by assuming, this time, the TA
equation with the coefficient of the Onsager reaction te
given in terms ofR̃ which is a function ofq and q3 @Eq.
~63!#. We note in this case that noise variances2 in Eq. ~77!
can be given by a direct evaluation as shown in Appendi
leading to Eq.~77! together with Eqs.~75! and~78!. We have
Eq. ~71! as before. Since combining Eqs.~63! and~81! gives
the expression~82! for R̃, which in turn determines the func
tion F in Eq. ~51!, we conclude our alternative procedure f
obtaining the stochastic version of the SCSNA.

V. REPLICA SYMMETRIC CALCULATION

The result obtained in the preceding section can be c
firmed by the standard method of statistical mechanics
other words, the set of order parameter equations are re
ered by the method of replica symmetric calculation@2,9–
12#, with which we are concerned in this section.

The partition function in Eq.~9! reads

Z5E ) dxi expF2bH(
i

S f~xi !1
1

2
axi

2D
2

1

2N (
m

S (
i

j i
mxi D 2J G . ~83!
4-8
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The standard replica symmetric calculation can be applie
this partition function to obtain the free energy. A brief de
vation is given in Appendix B. The resultant free ener
takes the form

f 5
b

2
m21

a

2 H ln~12bQ!1
b~Q2q1!

12bQ J 1ab2~r 28Q1q1R!

2K 1

A2p
E expS 2

z2

2 D ln@Tr exp~bA2ar 28xz1ab2Rx2

2bf̃~x!1bjxm!#dzL . ~84!

Differentiating f with respect tom, q1 , Q, R, r 28 yields a
set of order parameter equations,

] f

]m
50: m5 K E Dzj^x& L

j

, ~85!

] f

]q1
50:

21

2~12bQ!
1bR50, ~86!

] f

]Q
50: 2r 285

q12Q

~12bQ!2 , ~87!

] f

]R
50: q15 K E Dz^x2& L , ~88!

] f

]r 28
50: bQ5K E Dz z

1

A2ar 28
^x&L , ~89!

where

^g~x!&5
Trg~x!exp@S#

Tr exp@S#
, ~90!

S5bA2ar 28xz1ab2Rx22bf̃~x!1bjxm, ~91!

E Dz¯5E dz
1

A2p
expS 2

z2

2 D¯ .

Note that differentiatinĝx& with respect toA2ar 28z yields

d^x&

A2ar 28dz
5b~^x2&2^x&2!. ~92!

Accordingly, Eq.~89! can be rewritten as

Q5q12 K E Dz^x&2L . ~93!

Then one has

q2[q12Q5 K E Dz^x&2L . ~94!
01190
to With setting

q5q2 , U5bQ, GSCSNA52abR2a, r 52r 28
~95!

together with

Y~z!5^x&, ~96!

Eqs. ~85!, ~94!, ~89!, ~87!, and ~86! constitute the order pa
rameter equations that recover those given by the SCSN
Secs. II and IV. A similar set of order parameter equatio
was also obtained by Kuhnet al. @11,12# using the replica
calculation for a different type of stochastic analog netwo
with multiplicative noise.

Our present result shows that the SCSNA is on the sa
level of analysis as the replica symmetric calculation, as
as a stochastic system satisfies the energy condition.

VI. SUMMARY AND DISCUSSION

We have studied a stochastic analog neural netw
model for associative memory to elucidate statistical m
chanical aspects of the mean field model of a certain type
random systems to which the present model with rand
patterns stored belongs. We have taken three approaches
TAP equation, SCSNA, and replica symmetric calculati
approaches to compare them and obtained the same set o
order parameter equations for investigating statistical pr
erties of retrieval states.

The main results are the following:~1! We have obtained
the TAP equation for the stochastic analog networks sati
ing the energy condition using the cavity method.~2! We
have formulated the SCSNA of the stochastic version to
tain the set of order parameter equations for memory
trieval states.~3! We have established the connection b
tween the Onsager reaction term in the TAP equation and
output proportional term in the local field of the SCSNA.

The advantage of conducting the comparative study is
get deep insights into the structure of the TAP equation
its relation to the SCSNA. Indeed, the SCSNA metho
which was originally developed for deterministic analog n
works has been extended so as to be applicable to the ca
stochastic networks and the relationship between the T
equation and the SCSNA has been made clear. The key
bridging over the two approaches is the concept of cav
method together with the treatment of the Onsager reac
term. To be more specific, we have employed the cav
method for deriving the pre-TAP equation and applied
SCSNA to such a deterministic equation satisfied by ther
average to obtain the set of the order parameter equati
This process constitutes the stochastic version of the SCS
and reveals an important relation as shown by Eqs.~4! or
~23!, that is, the Onsager reaction term that appears in
TAP equation and the output proportional term in the lo
field that occurs within the framework of the SCSNA canc
each other. As a result of this, the Onsager reaction t
turns out to be explicitly determined without resorting to t
second step that is usually used in the cavity approach.
the other hand, when we first assume the full knowledge
4-9
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the TAP equation with the Onsager reaction term given
Eq. ~63!, we have shown that it is not necessary to use
deterministic version of the SCSNA for deriving the stoch
tic version of the SCSNA.

Our systematic approach in Sec. IV of the present pape
develop the stochastic version of the SCSNA is based on
model equation~5! where the existence of an energy functi
is assumed for simplicity. Extending present analysis to ot
network models with the energy concept will be straightf
ward. Our recent study indeed shows that the SCSNA, T
and replica approaches are consistent with each other als
an oscillator neural network based on the phase oscill
model that has an energy function, and the relation~4! is
proven @49#. The outline of the stochastic SCSNA for th
oscillator neural network is given in Appendix C. The Ansa
or heuristic derivation of the SCSNA described in Sec.
whose validity has been confirmed for the model Equat
~5!, is quite naive and seems free from such an energy c
dition. We may expect its validity to still hold for more gen
eral cases without the energy condition by observing preli
nary results based on numerical simulations for su
systems, although it is hard to prove the validity by follow
ing the procedure for obtaining the marginal distribution
x0 as given in Sec. III for lack of the Gibbs-type equilibriu
densities. The problem of finding the TAP equation for ge
eral systems, if any, will be of value and interest. There
also an open problem of whether the SCSNA can deal w
the instability of the replica symmetric solutions. Such issu
will be studied elsewhere.

APPENDIX A: DERIVATION OF EQ. „77… USING
A DIRECT COMPUTATION BASED ON THE

RENORMALIZATION OF NOISE †21,22‡

We directly derive the expression for noise variance
Eq. ~77! from Eq. ~69!. We first evaluatêmm& in Eq. ~69!.
Noting Eq.~64! with N replaced byN21, we have

^mm&N5
1

N (
j

N

j j
m^xj&N5

1

N (
j

N

j j
mF~^hj&N21! ~A1!

with

^hj&N215(
kÞ j

Jjk^xk&N21

5
1

N (
kÞ j

(
n

j j
njk

n^xk&N21

5
1

N (
kÞ j

j j
mjk

m^xk&N211
1

N (
kÞ j

(
nÞm

j j
njk

n^xk&N21 .

~A2!

Then it follows that

F~^hj&N21!5F~^hj&N21
~m! !1j j

m^mm&N21F8~^hj&N21
~m! !

1oS 1

AN
D ~A3!
01190
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where noting Eq.~67! we have performed the Taylor expan
sion and defined

^hj&N21
~m! 5

1

N (
kÞ j

(
nÞm

j j
njk

n^xk&N21 . ~A4!

Substituting Eq.~A3! into Eq. ~A1! leads to

^mm&N5
1

N (
j

j j
mF~^hj&N21

~m! !

1
1

N (
j

^mm&N21F8~^hj&N21
~m! !. ~A5!

AssumingN so large that̂mm&N5^mm&N21 , one then has

^mm&N5

1

N
( jj j

mF~^hj&N21
~m! !

12^F8& z̃,j
, ~A6!

where^F8& z̃,j represents the site average ofF8 as given in
text. Accordingly it follows that

(
m52

p

^mm&N
2 5

1

~12U !2

1

N2

3(
m

(
j

(
k

j j
mjk

mF~^hj&N21
~m! !F~^hk&N21

~m! !

5
1

~12U !2

a

N (
j

@F~^hj&N21!#2

5
a

~12U !2 ^F2& z̃,j , ~A7!

where we have putU5^F8& z̃,j as in Eq.~75! and noted that
one can safely replacêhj&N21

(m) with ^hj&N21 in this stage of
the analysis. Equations~69! and ~A7! give Eq.~77!.

APPENDIX B: DERIVATION OF THE FREE ENERGY „84…
BASED ON THE REPLICA SYMMETRIC

CALCULATION

Using the partition function~83! corresponding to the
equilibrium probability density~9!, one computes the free
energy by means of

f 5 lim
N→`

lim
n→0

^Zn&21

nN
. ~B1!

Introducing n replicas and using the Hubbard
Stratonovich transformation, one obtainsZn as
4-10



um

e

STATISTICAL MECHANICS OF STOCHASTIC NEURAL . . . PHYSICAL REVIEW E 69, 011904 ~2004!
Zn5E )
i ,a

dxia expF2b(
a

H(
i

f̃~xia!

2
1

2N (
m

S (
i

j i
mxiaD 2J G

5E )
i ,a

dxiaE )
m,a

dmmaS bN

2p D pn/2

expF2b(
ia

f̃~xia!

2
bN

2 (
ma

mma
2 1b(

ma
(

i
j i

mxiammaG , ~B2!

where

f̃~xia!5f~xia!1 1
2 axia

2 . ~B3!

After some manipulations we have

^Zn&5^Zn&m>25S bN

2p D pn/2S bN

2p D 2~p21!n/2S 2ab2N

2p i D n2

3E )
a

dma)
~ab!

dqab)
~ab!

drab expV ~B4!

with

V52
bN

2 (
a

ma
22

p21

2
ln@detB~$qab%!#

2N(
~ab!

ab2r abqab1N^ ln„Trxa
$exp@2bHj~$m%!#%…&j ,

~B5!

where the trace stands for

Tr $xia%@ #[E )
~ ia !

dxia@ # ~B6!

with the Hamiltonian

Hj~$m1%![2S ab(
~ab!

r abxaxb2(
a

f̃~xa!1(
a

jxam1aD
~B7!

and the matrixB is defined by

B5I 2bQ ~B8!

with

Qab5(
i

1

N
xiaxib . ~B9!

In the largeN limit the above integral in Eq.~B4! can be
evaluated using the saddle point method where we ass
the replica symmetry

ma5m, qab5q2 ~aÞb!, qaa5q1 , r ab5r 2

~aÞb!, r aa5r 1 . ~B10!
01190
e

Then it follows that

f 5 lim
N→`

lim
n→0

^Zn&21

nN
5

b

2
m21ab2r 1q1

2ab2
r 2

2
q21 lim

n→0

a

2n
ln~detB!

2 lim
n→0

1

n
^ ln„Trxa

$exp@2bHj~m!#%…&j , ~B11!

where one can easily evaluate

lim
n→0

1

n
ln~detB!5 ln~12bq11bq2!2

bq2

12bq11bq2
.

~B12!

The trace part of Eq.~B11! can be calculated using th
Hubbard-Stratonovich transformation as

lim
n→0

1

n
^ ln„Trxa

$exp@2bHj~m!#%…&j

5K E dz
1

A2p
expS 2

z2

2 D ln@Trx exp~bĤj!#L
j

,

~B13!

where

Ĥj5A2ar 28zx1ab~r 12r 28!x22f̃~x!1jxm. ~B14!

Accordingly we have

f 5
b

2
m21ab2r 1q12ab2r 28q2

1
a

2 F ln~12bq11bq2!2
bq2

12bq11bq2
G

2K E dz
1

A2p
expS 2

z2

2 D ln@Trx exp~bĤj!#L
j

.

~B15!

Setting

Q5q12q2 ,

R5r 12r 28 , ~B16!

we finally arrive at the expression for the free energy~84!

f 5
b

2
m21ab2~r 28Q1q1R!1

a

2 F ln~12bQ!1
b~Q2q1!

12bQ G
2K E dz

1

A2p
expS 2

z2

2 D ln@Trx exp~bĤj!#L
j

. ~B17!
4-11
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APPENDIX C: STOCHASTIC SCSNA FOR THE
OSCILLATOR NETWORK

The network dynamics is assumed to be given by

du i

dt
52(

j
Ji j sin~u i2u j !1 f i~ t !, i 51, . . . ,N

~C1!

with white noisef i(t) and synaptic couplingJi j being given
as in Eqs.~5!, ~6!, and~7!. We are concerned with the equ
librium state. Noting that the system has rotational symm
try, one can choose a gauge such that one of the ove
order parameters that will be given below vanishes:ms

150.
In this case the stochastic SCSNA claims the followi

ansatz of the local fields of the oscillator neurons:

hi
c5(

j Þ i
Ji j cosu j5j i

1mc
11 z̃c1GSCSNA

~c! cosu i ,

hi
s5(

j Þ i
Ji j sinu j5j i

1ms
11 z̃s1GSCSNA

~s! sinu i5 z̃s

1GSCSNA
~s! sinu i , ~C2!

where

mc
15

1

N (
j

j j
1^cosu j&eq, ms

15
1

N (
j

j j
1^sinu j&eq,

~C3!

where ^ &eq denotes the average over the marginal equi
rium probability densityPeq(u i) that is self-consistently de
termined below.GSCSNA

(c) and GSCSNA
(s) , analogs of Eq.~16d!

are given, within the framework of the SCSNA, by

GSCSNA
~c! 5

aUc

12Uc
, GSCSNA

~s! 5
aUs

12Us
, ~C4!

with Uc andUs representing

Uc5 K ]

] z̃c
^cosu&eqL

site

, Us5 K ]

] z̃s
^sinu&eqL

site

,

~C5!

where the site averagê&site denotes the average over th
pattern $j i

1% and the two Gaussian noises. The Gauss
noisesz̃c and z̃s with mean 0 are independent of each oth
and have variances

^z̃c
2&site5

a^@^cosu&eq#
2&site

~12Uc!
2 , ^z̃s

2&site5
a^@^sinu&eq#

2&site

~12Us!
2 .

~C6!
v

01190
-
ap

-

n
r

The Fokker-Planck equation corresponding to the sing
body Langevin equation that is reduced from Eq.~C1! using
Eq. ~C2! yields the marginal equilibrium probability densit
Peq(u i), which is the analog of Eq.~14!,

Peq~u i ;j i
1mc

11 z̃c ,z̃s!5C expS 2H~u i !

D D ~C7!

with C representing the normalization constant and

H~u i !52cosu i~j i
1mc

11 z̃c!2 z̃s sinu i

2
a~Uc2Us!

4~12Uc!~12Us!
cos 2u i . ~C8!

Equations~C4!–~C6! together with those for the overla
mc

1 @Eq. ~C3!#, Edwards-Anderson-like order paramete
^@^cosu&eq#

2&site and^@^sinu&eq#
2&site constitute a set of orde

parameter equations for the oscillator network~C1!, which
can be justified by applying the method presented in Sec.
The deterministic limitD→0 recovers the previous resu
@30,49#.

The TAP equation under the gauge withms
150 for the

oscillator network~C1! can be straightforwardly obtained a
in deriving Eq.~20! of Sec. II by noting Eq.~C2!:

^cosu i&eq5E
0

2p

du i cosu i Peq~u i ;Hi
TAP~c! ,Hi

TAP~s!!

^sinu i&eq5E
0

2p

du i sinu i Peq~u i ;Hi
TAP~c! ,Hi

TAP~s!!,

~C9!

where

Hi
TAP~c!5(

j Þ i
Ji j ^cosu j&eq2GSCSNA

~c! ^cosu i&eq,

Hi
TAP~s!5(

j Þ i
Ji j ^sinu j&eq2GSCSNA

~s! ^sinu i&eq. ~C10!

We see that the analog of relation~4! also holds in this
case. The above results can be confirmed by a more sys
atic approach based on the procedure presented in Sec
and IV. The TAP equation under a more general situat
without using the gaugems

150 can also easily be obtained
ensuring the relationship between the output proportio
term and the Onsager reaction term as claimed in the pre
paper. More details will be published elsewhere@49#.
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